平面上的n个圆.每两个圆都相交.每三个圆都不相交于一点.则它们把平面分成()部分 A.n2-n+2 B.n2+n C.n2-2n+3 D.n2+2n-1 查看更多

 

题目列表(包括答案和解析)

平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成f(n)块区域,有f(1)=2,f(2)=4,f(3)=8,则f(n)的表达式为(  )

查看答案和解析>>

平面上有n个圆,其中每两个圆之间都相交于两个点,每三个圆都无公共点,它们将平面分成f(n)块区域,则f(n)的表达式是(  )

查看答案和解析>>

平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成f(n)块区域,有f(1)=2,f(2)=4,f(3)=8,则f(n)的表达式为( )
A.2n
B.2n
C.n2-n+2
D.2n-(n-1)(n-2)(n-3)

查看答案和解析>>

平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成f(n)块区域,有f(1)=2,f(2)=4,f(3)=8,则f(n)的表达式为( )
A.2n
B.2n
C.n2-n+2
D.2n-(n-1)(n-2)(n-3)

查看答案和解析>>

平面上有n个圆,其中每两个圆之间都相交于两个点,每三个圆都无公共点,它们将平面分成f(n)块区域,则f(n)的表达式是( )
A.2n
B.2n-(n-1)(n-2)(n-3)
C.n3-5n2+10n-4
D.n2-n+2

查看答案和解析>>


同步练习册答案