证明:如图建系: 则C.D1.N ∴ ∴ 但与所成的角应是的补角.∴与所成的角的余弦值为 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

(2013•宿迁一模)【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,已知AB,CD是圆O的两条弦,且AB是线段CD的 垂直平分线,若AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换(本小题满分10分)
已知矩阵M=
21
1a
的一个特征值是3,求直线x-2y-3=0在M作用下的新直线方程.
C.选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系xOy中,已知曲线C的参数方程是
x=cosα
y=sinα+1
(α是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲(本小题满分10分)
已知关于x的不等式|ax-1|+|ax-a|≥1的解集为R,求正实数a的取值范围.

查看答案和解析>>

请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。

(本小题满分10分)选修4—1:几何证明选讲

如图,⊙O是的外接圆,D是的中点,BD交AC于E。

   (I)求证:CD2=DE·DB。

   (II)若O到AC的距离为1,求⊙O的半径。

(本小题满分10分)

选修4—4:作标系与参数方程

已知直线的参数方程为(t为参数),曲线C的极坐标方程为,以极点为原点,极轴为x轴正半轴建立直角坐标系,M点坐标为(0,2),直线与曲线C交于A,B两点。

   (I)写出直线的普通方程与曲线C的直角坐标方程;

   (II)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值。

(本小题满分10分)选修4—5:不等式选讲

设函数

   (I)画出函数的图象;

   (II)若对任意恒成立,求a-b的最大值。

 

查看答案和解析>>

请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。

(本小题满分10分)选修4—1:几何证明选讲

如图,⊙O是的外接圆,D是的中点,BD交AC于E。

   (I)求证:CD2=DE·DB。

   (II)若O到AC的距离为1,求⊙O的半径。

(本小题满分10分)

选修4—4:作标系与参数方程

已知直线的参数方程为(t为参数),曲线C的极坐标方程为,以极点为原点,极轴为x轴正半轴建立直角坐标系,M点坐标为(0,2),直线与曲线C交于A,B两点。

   (I)写出直线的普通方程与曲线C的直角坐标方程;

   (II)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值。

(本小题满分10分)选修4—5:不等式选讲

设函数

   (I)画出函数的图象;

   (II)若对任意恒成立,求a-b的最大值。

 

查看答案和解析>>

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
A.设函数f(x)=|2x+1|-|x-4|.则不等式f(x)>2的解集为   
B.(坐标系与参数方程选做题)曲线C:(α为参数),若以点O(0,0)为极点,x正半轴为极轴建立极坐标系,则该曲线的极坐标方程是   

C.(几何证明选讲选做题) 如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,弧AE=弧AC,DE交AB于F,且AB=2BP=4,则PF=   

查看答案和解析>>


同步练习册答案