7. (Ⅰ)记“摸出两个球.两球恰好颜色不同 为A. 摸出两个球共有方法种. 其中.两球一白一黑有种. ----4分 . ------------6分 (Ⅱ)法一:记摸出一球.放回后再摸出一个球 “两球恰好颜色不同 为B. 摸出一球得白球的概率为.摸出一球得黑球的概率为. --8分 “有放回摸两次.颜色不同 指“先白再黑 或“先黑再白 . -----10分 . -----------12分 法二:有放回地摸两次.互相独立. 摸一次得白球的概率为,--10分 “有放回摸两次.颜色不同 的概率为 ----------------12分 查看更多

 

题目列表(包括答案和解析)

已知一个口袋中装有n个红球(n≥1且n∈N+)和2个白球,从中有放回连续摸三次,每次摸出2个球,若两个球颜色不同,则为中奖.
(1)当n=3时,设中奖次数为ζ,求ζ的分布列及期望;
(2)记三次摸球中,恰好两次中奖概率为P,当n为多少时,P有最大值.

查看答案和解析>>

已知一个口袋中装有n个红球(n≥1且n∈N+)和2个白球,从中有放回连续摸三次,每次摸出2个球,若两个球颜色不同,则为中奖.
(1)当n=3时,设中奖次数为ζ,求ζ的分布列及期望;
(2)记三次摸球中,恰好两次中奖概率为P,当n为多少时,P有最大值.

查看答案和解析>>

一个口袋中装有大小相同的2个白球和4个黑球,要从中摸出两个球.
(Ⅰ)采取放回抽取方式,求摸出两球颜色恰好不同的概率;
(Ⅱ)采取不放回抽取方式,记摸得白球的个数为ξ,试求ξ的分布列,并求它的期望和方差.(方差Dξ=
ni=1
pi(ξi-Eξ)2

查看答案和解析>>

一个口袋中装有大小相同的2个白球和4个黑球,要从中摸出两个球.
(Ⅰ)采取放回抽取方式,求摸出两球颜色恰好不同的概率;
(Ⅱ)采取不放回抽取方式,记摸得白球的个数为ξ,试求ξ的分布列,并求它的期望和方差.

查看答案和解析>>

一个口袋中装有大小相同的2个白球和4个黑球,要从中摸出两个球.
(Ⅰ)采取放回抽取方式,求摸出两球颜色恰好不同的概率;
(Ⅱ)采取不放回抽取方式,记摸得白球的个数为ξ,试求ξ的分布列,并求它的期望和方差.(方差Dξ=
n
i=1
pi(ξi-Eξ)2

查看答案和解析>>


同步练习册答案