14.解:直线方程为y=-x+4,联立方程,消去y得,. 设A(),B(),得 所以:,p>0. 由已知可得+=0,从而16-8p=0,得p=2. 所以抛物线方程为y2=4x,焦点坐标为F(1,0). 查看更多

 

题目列表(包括答案和解析)

在△ABC中,BC边上的高的直线为x-2y+1=0,∠A的平分线所在直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.

查看答案和解析>>

给出以下命题:
①过点P(2,3),且与圆(x-1)2+(y-1)2=1相切的直线方程为3x-4y+6=0;
②双曲线
y2
49
-
x2
25
=-1的渐近线方程为y=±
7
5
x;
③不等式
1-2x
(x-1)(x+3)
≤0的解集为{x|x<-3或
1
2
≤x<1};
④已知点A(4,-2),抛物线y2=8x的焦点为F,点M在抛物线上移动,则|MA|+|MF|的最小值为6.
其中正确命题的序号是
②④
②④

查看答案和解析>>

设二次函数g(x)的图象在点(m,g(m))的切线方程为y=h(x),若f(x)=g(x)-h(x)
则下面说法正确的有:
 

①存在相异的实数x1,x2使f(x1)=f(x2)成立;
②f(x)在x=m处取得极小值;
③f(x)在x=m处取得极大值;
④不等式|f(x)|<
12013
的解集非空;
⑤直线 x=m一定为函数f(x)图象的对称轴.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
12
34

①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(a为参数),点Q极坐标为(2,
7
4
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范围.

查看答案和解析>>

已知实数x,y满足方程x2+y2+4y-96=0,有下列结论:
①x+y的最小值为-10
2
-2

②对任意实数m,方程(m-2)x-(2m+1)y+16m+8=0(m∈R)与题中方程必有两组不同的实数解;
③过点M(0,18)向题中方程所表示曲线作切线,切点分别为A,B,则直线AB的方程为y=3;
④若x,y∈N*,则xy的值为36或32.
以上结论正确的有
 
(用序号表示)

查看答案和解析>>


同步练习册答案