19.已知正四棱柱ABCD-A1B1C1D1.底面边长为3.侧棱长为4.连CD1.作C1M⊥CD1交DD1于M. (1)求证:BD1⊥平面A1C1M. (2)求二面角C1-A1M-D1的大小. 查看更多

 

题目列表(包括答案和解析)

已知正四棱柱ABCD-A1B1C1D1的底面边长为4,侧棱长为6,Q为BB1的中点,P∈DD1,M∈AB,N∈CD且AM=1,DN=3,(I)若PD=
32
,证明:(I)D1Q∥面PMN;
(II)若P为DD1的中点,求面PMN与面AA1D1D所成二面角的大小;
(III)在(II)的条件下,求点Q到面PMN的距离.

查看答案和解析>>

已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长AA1=2
7
,它的外接球的球心为O,
点E是AB的中点,点P是球O的球面上任意一点,有以下判断:
(1)PE长的最大值是9;
(2)P到平面EBC的距离最大值是4+
7

(3)存在过点E的平面截球O的截面面积是3π;
(4)三棱锥P-AEC1体积的最大值是20.
其中正确判断的序号是
 

查看答案和解析>>

已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长AA1=2
7
,它的外接球的球心为O,点E是AB的中点,点P是球O的球面上任意一点,有以下判断,
(1)PE长的最大值是9;(2)三棱锥P-EBC的最大值是
32
3
;(3)存在过点E的平面,截球O的截面面积是3π;(4)三棱锥P-AEC1体积的最大值是20.
正确的是
 

查看答案和解析>>

已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长AA1=2
7
,它的外接球的球心为O,点E是AB的中点,点P是球O的球面上任意一点,有以下判断,
(1)PE长的最大值是9;(2)三棱锥P-EBC的最大值是
32
3
;(3)存在过点E的平面,截球O的截面面积是3π;(4)三棱锥P-AEC1体积的最大值是20.
正确的是______.

查看答案和解析>>

已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长,它的外接球的球心为O,点E是AB的中点,点P是球O的球面上任意一点,有以下判断,
(1)PE长的最大值是9;(2)三棱锥P-EBC的最大值是;(3)存在过点E的平面,截球O的截面面积是3π;(4)三棱锥P-AEC1体积的最大值是20.
正确的是   

查看答案和解析>>


同步练习册答案