已知f(x)=,则不等式f(x)+2>0的解集为( ) A.(2,2) B. ( C. D.( 查看更多

 

题目列表(包括答案和解析)

已知f(x)=cosx,则下列式子不成立的是(    )

A.f(2π+x)=f(-x)         B.f(2π+x)=-f(π+x)

C.f(-x)=-f(x)              D.f(-x)=f(x)

查看答案和解析>>

若函数f(x)为定义域D上单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间.
(1)已知f(x)=x
12
是[0,+∞)上的正函数,求f(x)的等域区间;
(2)试探究是否存在实数m,使得函数g(x)=x2+m是(-∞,0)上的正函数?若存在,请求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知f(x)=
1
x2
,则f(x)(  )

查看答案和解析>>

已知f(x)=sin(2x+
π
2
),g(x)=cos(2x-
π
2
)
,则下列结论中不正确的是(  )
A、将函数f(x)的图象向右平移
π
4
个单位后得到函数g(x)的图象
B、函数y=f(x)•g(x)的图象关于(
π
8
,0)
对称
C、函数y=f(x)•g(x)的最大值为
1
2
D、函数y=f(x)•g(x)的最小正周期为
π
2

查看答案和解析>>

(2010•湖北模拟)定理:若函数f(x)在闭区间[m,n]上是连续的单调函数,且f(m)f(n)<0,则存在唯一一个x0∈(m,n)使f(x0)=0.已知f(x)=sinx(0≤x≤
π
2
)

(1)若g(x)=f(cosx)-ax(0≤x≤
π
2
)
是减函数,求a的取值范围.
(2)是否存在c,d∈(0,
π
2
)使f(cosc)=c和cos[f(d)]=d
同时成立,若存在,指出c、d之间的等式关系,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案