若|x-1|<.|y-2|<.则下列不等式一定成立的是 A.|2x-y|<ε B.|2x-y|>ε C.|2x-y|>ε D.|2x-y|<ε 查看更多

 

题目列表(包括答案和解析)

下列命题中:
(1)方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
(2)函数f(x)=lg(mx2+mx+1)的定义域为R,则m的取值范围是m∈(0,4);
(3)若函数y=
x2+ax+2
在区间(-∞,1]上是减函数,则实数a∈[-3,-2];
(4)若函数f(3x+1)是偶函数,则f(x)的图象关于直线x=
1
3
对称.
(5)若对于任意x∈(1,3)不等式x2-ax+2<0恒成立,则a>
11
3

其中的真命题是
(1),(3),(5)
(1),(3),(5)
(写出所有真命题的编号).

查看答案和解析>>

若函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,给出下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a<0,则必存在实数x0,使f[f(x0)]>x0
③若a+b+c=O,则不等式f[f(x)]<x对一切实数x都成立;
④函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论个数有(  )

查看答案和解析>>

若函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,给出下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a<0,则必存在实数x,使f[f(x)]>x
③若a+b+c=O,则不等式f[f(x)]<x对一切实数x都成立;
④函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论个数有( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

若函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,给出下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a<0,则必存在实数x,使f[f(x)]>x
③若a+b+c=O,则不等式f[f(x)]<x对一切实数x都成立;
④函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论个数有( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

若函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,给出下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a<0,则必存在实数x0,使f[f(x0)]>x0
③若a+b+c=O,则不等式f[f(x)]<x对一切实数x都成立;
④函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论个数有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>


同步练习册答案