若函数的图象与x轴正方向有两个不同的交点.则a的取 值范围是( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)的图象与x轴交点为(-,0),与此交点距离最小的最高点坐标为(,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若函数f(x)满足方程f(x)=a(-1<a<0),求在[0,2π]内的所有实数根之和;
(Ⅲ)把函数y=f(x)的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数y=g(x)的图象.若对任意的0≤m≤3,方程|g(kx)|=m在区间[0,]上至多有一个解,求正数k的取值范围.

查看答案和解析>>

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)的图象与x轴交点为(-,0),与此交点距离最小的最高点坐标为(,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若函数f(x)满足方程f(x)=a(-1<a<0),求在[0,2π]内的所有实数根之和;
(Ⅲ)把函数y=f(x)的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数y=g(x)的图象.若对任意的0≤m≤3,方程|g(kx)|=m在区间[0,]上至多有一个解,求正数k的取值范围.

查看答案和解析>>

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)的图象与x轴交点为(-
π
6
,0),与此交点距离最小的最高点坐标为(
π
12
,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若函数f(x)满足方程f(x)=a(-1<a<0),求在[0,2π]内的所有实数根之和;
(Ⅲ)把函数y=f(x)的图象的周期扩大为原来的两倍,然后向右平移
3
个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数y=g(x)的图象.若对任意的0≤m≤3,方程|g(kx)|=m在区间[0,
6
]上至多有一个解,求正数k的取值范围.

查看答案和解析>>

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)的图象与x轴交点为(-
π
6
,0),与此交点距离最小的最高点坐标为(
π
12
,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若函数f(x)满足方程f(x)=a(-1<a<0),求在[0,2π]内的所有实数根之和;
(Ⅲ)把函数y=f(x)的图象的周期扩大为原来的两倍,然后向右平移
3
个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数y=g(x)的图象.若对任意的0≤m≤3,方程|g(kx)|=m在区间[0,
6
]上至多有一个解,求正数k的取值范围.

查看答案和解析>>


同步练习册答案