3.若函数的图象上点及点则的值是: A.2 B. C. D. 查看更多

 

题目列表(包括答案和解析)

对于函数y=f(x),如果存在一个正的常数a,使得定义域D内的任意两个不等的值x1、x2都有|f(x1)-f(x2)|≤a|x1-x2|成立,则称函数y=f(x)为D上的利普希茨I类函数.已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.

(1)求函数y=g(x)的解析式及定义域M;

(2)证明:函数y=g(x)为M上的利普希茨I类函数;

(3)若A、B为C2上两点,求证:直线AB与直线y=x相交.

查看答案和解析>>

对于函数y=f(x),如果存在一个正的常数a,使得定义域D内的任意两个不等的值x1、x2都有|f(x1)-f(x2)|≤a|x1-x2|成立,则称函数y=f(x)为D上的利普希茨I类函数.已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.

(1)求函数y=g(x)的解析式及定义域M;

(2)证明:函数y=g(x)为M上的利普希茨I类函数;

(3)若A、B为C2上两点,求证:直线AB与直线y=x相交.

查看答案和解析>>

16.(2)解(1)当a=1,b=-2时,g(x)=f(x)-2,把f(x)图象向下平移两个单位就可得到g(x)图象,

这时函数g(x)只有两个零点,所以(1)不对

(2)若a=-1,-2<b<0,则把函数f(x)作关于x轴对称图象,然后向下平移不超过2个单位就可得到g(x)图象,这时g(x)有超过2的零点

(3)当a<0时, y=af(x)根据定义可断定是奇函数,如果b≠0,把奇函数y=af(x)图象再向上(或向下)平移后才是y=g(x)=af(x)+b的图象,那么肯定不会再关于原点对称了,肯定不是奇函数;当b=0时才是奇函数,所以(3)不对。所以正确的只有(2)

为了考察高中生学习语文与数学之间的关系,在某中学学生中随机地抽取了610名学生得到如下列表:

 语文

数学

及格

不及格

总计 

及格

310

142

452

不及格

94

64

158

总计

404

206

610

 由表中数据计算及的观测值问在多大程度上可以认为高中生的语文与数学成绩之间有关系?为什么?

查看答案和解析>>

16.(2)解(1)当a=1,b=-2时,g(x)=f(x)-2,把f(x)图象向下平移两个单位就可得到g(x)图象,
这时函数g(x)只有两个零点,所以(1)不对
(2)若a=-1,-2<b<0,则把函数f(x)作关于x轴对称图象,然后向下平移不超过2个单位就可得到g(x)图象,这时g(x)有超过2的零点
(3)当a<0时, y=af(x)根据定义可断定是奇函数,如果b≠0,把奇函数y=af(x)图象再向上(或向下)平移后才是y=g(x)=af(x)+b的图象,那么肯定不会再关于原点对称了,肯定不是奇函数;当b=0时才是奇函数,所以(3)不对。所以正确的只有(2)
为了考察高中生学习语文与数学之间的关系,在某中学学生中随机地抽取了610名学生得到如下列表:
 语文
数学
及格
不及格
总计 
及格
310
142
452
不及格
94
64
158
总计
404
206
610
 由表中数据计算及的观测值问在多大程度上可以认为高中生的语文与数学成绩之间有关系?为什么?

查看答案和解析>>

(Ⅰ)已知函数P(x1,f(x1)),Q(x2,f(x2))是f(x)图象上的任意两点,且x1<x2

①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;

②由①你得到的结论是:若函数f(x)在[a,b]上有导函数(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得(ξ)=________成立(用a,b,f(a),f(b)表示,只写出结论,不必证明)

(Ⅱ)设函数g(x)的导函数为(x),且(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:当x∈(0,1)时,g(1)x<g(x).

查看答案和解析>>


同步练习册答案