已知直线与抛物线:.分别相切于点A.B.且|AB|.则的值是 ( ) (A) (B) (C) (D)1 查看更多

 

题目列表(包括答案和解析)

已知椭圆数学公式,抛物线:x2=a2y.直线l:x-y-1=0过椭圆的右焦点F且与抛物线相切.
(1)求椭圆C的方程;
(2)设A,B为抛物线上两个不同的点,l1,l2分别与抛物线相切于A,B,l1,l2相交于C点,弦AB的中点为D,求证:直线CD与x轴垂直.

查看答案和解析>>

已知椭圆,抛物线:x2=a2y.直线l:x-y-1=0过椭圆的右焦点F且与抛物线相切.
(1)求椭圆C的方程;
(2)设A,B为抛物线上两个不同的点,l1,l2分别与抛物线相切于A,B,l1,l2相交于C点,弦AB的中点为D,求证:直线CD与x轴垂直.

查看答案和解析>>

精英家教网已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)
的离心率为
1
2
,上、下顶点分别为A1,A2,椭圆上的点到上焦点F1的距离的最小值为1.
(1)求椭圆C的标准方程.
(2)以原点为顶点,F1为焦点的抛物线上的点P(非原点)处的切线与x轴,y轴分别交于Q、R两点,若
PQ
PR
,求λ的值.
(3)是否存在过点(0,m)的直线l,使得l与椭圆相交于A、B两点(A、B不是上、下顶点)且满足
A1A
A1B
=0
,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

精英家教网已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=
3
2

(1)经过A、B两点分别作抛物线C的切线l1,l2,切线l1与l2相交于点M.证明:
MF
MA
=
MF
MB

(2)椭圆E上是否存在一点M',经过点M'作抛物线C的两条切线M'A',M'B'(A',B'为切点),使得直线A'B'过点F?若存在,求出抛物线C与切线M'A',M'B'所围成图形的面积;若不存在,请说明理由.

查看答案和解析>>

已知动圆过定点(
p
2
,0)
,且与直线l:x=-
p
2
相切,其中p>0.
(Ⅰ)求动圆圆心C的轨迹方程;
(Ⅱ)设A(x0,y0)为轨迹C上一定点,经过A作直线AB、AC 分别交抛物线于B、C 两点,若 AB 和AC 的斜率之积为常数c.求证:直线 BC 经过一定点,并求出该定点的坐标.

查看答案和解析>>


同步练习册答案