过点A.并且与x轴相切的圆有且只有一个.求m的值及此时对应圆的方程. 查看更多

 

题目列表(包括答案和解析)

过点A(0,1)和B(4,m),并且与x轴相切的圆有且仅有一个,求m的值及此时对应的圆的方程.

查看答案和解析>>

过点A(0,1)和B(4,m),并且与x轴相切的圆有且只有一个,求m的值及此时对应圆的方程。

查看答案和解析>>

精英家教网如图,已知两定点A(-1,0),B(1,0)和定直线l:x=4,动点M在直线l上的射影为N,且2|
BM
|=|
MN
|

(Ⅰ)求动点M的轨迹C的方程并画草图;
(Ⅱ)是否存在过点A的直线n,使得直线n与曲线C相交于P,Q两点,且△PBQ的面积等于
6
3
5
?如果存在,请求出直线n的方程;如果不存在,请说明理由.

查看答案和解析>>

(Ⅰ)已知圆O:x2+y2=4和点M(1,a),若实数a>0且过点M有且只有一 条直线与圆O相切,求实数a的值,并求出切线方程;
(Ⅱ)过点(
2
,0)引直线l与曲线y=
1-x2
相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,求直线l的方程.

查看答案和解析>>

(文)设F1、F2分别为椭圆C:(m>0,n>0且m≠n)的两个焦点.
(1)若椭圆C上的点A(1,)到两个焦点的距离之和等于4,求椭圆C的方程.
(2)如果点P是(1)中所得椭圆上的任意一点,且,求△PF1F2的面积.
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线(a>0,b>0)是否具有类似的性质?并证明你的结论.通过对上面问题进一步研究,请你概括具有上述性质的二次曲线更为一般的结论,并说明理由.

查看答案和解析>>


同步练习册答案