设椭圆的焦点在y轴上.m{1,2,3,4,5},n{1,2,3,4,5,6,7},则这样的椭圆的个数为 . 查看更多

 

题目列表(包括答案和解析)

设椭圆C:数学公式(a>b>0)的一个顶点坐标为A(数学公式),且其右焦点到直线数学公式的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(数学公式),求证:点M的所有“相关弦”的中点在同一条直线上;
(3)对于问题(2),如果点M坐标为M(t,0),当t满足什么条件时,点M(t,0)存在无穷多条“相关弦”,并判断点M的所有“相关弦”的中点是否在同一条直线上.

查看答案和解析>>

设椭圆C:数学公式(a>b>0)的一个顶点坐标为A(数学公式),且其右焦点到直线数学公式的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(数学公式),求证点M的所有“相关弦”的中点在同一条直线上;
(3)根据解决问题(2)的经验与体会,请运用类比、推广等思想方法,提出一个与“相关弦”有关的具有研究价值的结论,并加以解决.(本小题将根据所提出问题的层次性给予不同的分值)

查看答案和解析>>

设椭圆C:数学公式的左、右焦点分别为F1,F2,上顶点为A,以F1为圆心F1F2为半径的圆恰好经过点A且与直线l:x-数学公式y-3=0相切
(1)求椭圆C的离心率;
(2)求椭圆C的方程;
(3)过右焦点F2作斜率为K的直线与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得PM,PN以为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

设椭圆C:的右、右焦点分别为F1、F2,上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且2+=0.
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线x-y-3=0相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2的直线交椭圆于M、N两点,点P(4,0),求△PMN面积的最大值.

查看答案和解析>>

设椭圆C:的右、右焦点分别为F1、F2,上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且2+=0.
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线x-y-3=0相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2的直线交椭圆于M、N两点,点P(4,0),求△PMN面积的最大值.

查看答案和解析>>


同步练习册答案