题目列表(包括答案和解析)
(12分)抛物线
的焦点为
,过点
的直线交抛物线于
,
两点.
①
为坐标原点,求证:
;
②设点
在线段
上运动,原点
关于点
的对称点为
,求四边形
面积的最小值..
(12分)抛物线
的焦点为
,过点
的直线交抛物线于
,
两点.
①
为坐标原点,求证:
;
②设点
在线段
上运动,原点
关于点
的对称点为
,求四边形
面积的最小值..
已知抛物线
的焦点为椭圆
的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点
满足:
,直线
与
的斜率之积为
,证明:存在定点
使
得
为定值,并求出
的坐标;
(3)若
在第一象限,且点
关于原点对称,
垂直于
轴于点
,连接
并延长交椭圆于点
,记直线
的斜率分别为
,证明:
.
已知抛物线
的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且
.
(1)求点T的横坐标
;
(2)若以F1,F2为焦点的椭圆C过点
.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com