题目列表(包括答案和解析)
(本小题满分13分)对于在区间[m,n]上有意义的两个函数
与
,如果对任意
[m,n]均有
,称
与
在[m,n]上是接近的,否则称
与
在[m,n]上是非接近的,现有两个函数
与
(a>0,a≠1),给定区间[a+2,a+3].(1)若
与
在给定区间[a+2,a+3]上都有意义,求a的取值范围;(2)讨论
与
在[a+2,a+3]上是否是接近的.
(本小题满分13分)
已知函数
是定义在
上的奇函数,当
时,
(其中e是自然对数的底,
)
(1)求
的解析式;
(2)设
,求证:当
时,
;
(3)是否存在实数a,使得当
时,
的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。
(本小题满分13分)
在数列![]()
(I)若
是公比为β的等比数列,求α和β的值。
(II)若
,基于事实:如果d是a和b的公约数,那么d一定是a-b的约数。研讨是否存在正整数k和n,使得
有大于1的公约数,如果存在求出k和n,如果不存在请说明理由。
(本小题满分13分)
设![]()
(1)如果
处取得最小值-5,求
的解析式;
(2)如果
的单调递减区间的长度是正整数,试求m和n的值;(注;区间(a,b)的长度为b-a)
(本题满分13分)
检测部门决定对某市学校教室的空气质量进行检测,空气质量分为A、B、C三级.
每间教室的检测方式如下:分别在同一天的上、下午各进行一次检测,若两次检测中有C级或两次都是B级,则该教室的空气质量不合格.
设各教室的空气质量相互独立,且每次检测的结果也相互独立.
根据多次抽检结果,一间教室一次检测空气质量为A、B、C三级的频率依次为
,
,
.
(1) 在该市的教室中任取一间,估计该间教室空气质量合格的概率;
(2) 如果对该市某中学的4间教室进行检测,记在上午检测空气质量为A级的教室间数为X,并以空气质量为A级的频率作为空气质量为A级的概率,求X的分布列及期望值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com