抛物线y = -x2 的焦点坐标为 A.(0.) B.(0.-) C.(.0) D.(-.0) 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

已知椭圆方程为,其下焦点F1与抛物线x2=-4y的焦点重合,过F1的直线l与椭圆交于A、B两点,与抛物线交于C、D两点.当直线l与y轴垂直时,

(Ⅰ)求椭圆的方程;

(Ⅱ)求过点O、F1(其中O为坐标原点),且与直线(其中c为椭圆半焦距)相切的圆的方程;

(Ⅲ)求时直线l的方程,并求当斜率大于0时的直线l被(II)中的圆(圆心在第四象限)所截得的弦长.

查看答案和解析>>

21.抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)、B(x2,y2)两点(P,A,B三点互不相同),且满足.

(Ⅰ)求抛物线C的焦点坐标和准线方程;

(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上;

(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

查看答案和解析>>

抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(P、A、B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1).

(Ⅰ)求抛物线C的焦点坐标和准线方程;

(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上.

查看答案和解析>>

设b>0,椭圆方程为,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1

(1)求满足条件的椭圆方程和抛物线方程;

(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

设b>0,椭圆方程为,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1

(1)求满足条件的椭圆方程和抛物线方程;

(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>


同步练习册答案