对于椭圆C1:焦点为顶点.以椭圆C1的顶点为焦点的双曲线C2.下列结论中错误的是( ) A. C2的方程为 B. C1.C2的离心率的和是1 C. C1.C2的离心率的积是1 D.短轴长等于虚轴长 查看更多

 

题目列表(包括答案和解析)

精英家教网若椭圆E1
x2
a
2
1
+
y2
b
2
1
=1
和椭圆E2
x2
a
2
2
+
y2
b
2
2
=1
满足
a2
a1
=
b2
b1
=m
 (m>0)
,则称这两个椭圆相似,m称为其相似比.
(1)求经过点(2,
6
)
,且与椭圆
x2
4
+
y2
2
=1
相似的椭圆方程;
(2)设过原点的一条射线l分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为
x2
32
+
y2
(
3
2
2
)
2
=1
”.请用推广或类比的方法提出类似的一个真命题,并给予证明.

查看答案和解析>>

(2013•松江区一模)对于双曲线C:
x2
a2
-
y2
b2
=1,(a>0,b>0)
,定义C1
x2
a2
+
y2
b2
=1
,为其伴随曲线,记双曲线C的左、右顶点为A、B.
(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;
(2)若双曲线C的方程为x2-y2=1,过点M(-
3
,0)
且与C的伴随曲线相切的直线l交曲线C于N1、N2两点,求△ON1N2的面积(O为坐标原点)
(3)若双曲线C的方程为
x2
4
-
y2
2
=1
,弦PQ⊥x轴,记直线PA与直线QB的交点为M,求动点M的轨迹方程.

查看答案和解析>>

对于以下两个椭圆C1:9x2+y2=36,C2
x2
16
+
y2
12
=1
,正确的说法是(  )

查看答案和解析>>

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,O为坐标原点,过F2的直线l1与C1交于A,B两点,且△ABF1的周长为4
2
,l1的倾斜角为α.
(I)当l1垂直于x轴时,|AF2|+|BF2|=2
2
|AF2|•|BF2|

①求椭圆C1的方程;
②求证:对于?α∈[0,π),总有|AF2|+|BF2|=2
2
|AF2|•|BF2|

(II)在(I)的条件下,设直线l2与椭圆交于C,D两点,且OC⊥OD,过O作l2的垂线交l2于E,求E的轨迹方程C2,并比较C2与C1通径所在直线的位置关系.

查看答案和解析>>

已知双曲线C1的渐近线方程是y=±
3
3
x,且它的一条准线与渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为
1
2
的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求实数m的值.

查看答案和解析>>


同步练习册答案