(n2-2n+2)+(n2-2n+3)+-+n2=(n-1)3+n3 查看更多

 

题目列表(包括答案和解析)

已知数列{a}满足an=2an-1+2n+2(n≥2,a1=2),
(1)求a2,a3,a4
(2)是否存在一个实数λ,使得数列{
an
2n
}成等差数列,若存在,求出λ的值,若不存在,请说明理由;
(3)求数列{an}的前n项和,证明:Sn≥n3+n2

查看答案和解析>>

已知数列{an}满足an=2an-1+2n+2(n≥2),a1=2.

(1)求a2,a3,a4;

(2)是否存在一个实数λ,使得数列{}成等差数列,若存在,求出λ的值;若不存在,请说明理由;

(3)设Sn为数列{an}的前n项和,证明Sn>n3+n2.

查看答案和解析>>

已知数列{an}、{bn}、{cn}满足(an+1-an)(bn+1-bn)=cn(n∈N*)
(1)设cn=3n+6,{an}是公差为3的等差数列.当b1=1时,求b2、b3的值;
(2)设cn=n3ann2 -8n.求正整数k,使得对一切n∈N*,均有bn≥bk
(3)设cn=2n +nan=
1+(-1)n
2
.当b1=1时,求数列{bn}的通项公式.

查看答案和解析>>

(2009•淄博一模)已知数列{a}满足an=2an-1+2n+2(n≥2,a1=2),
(1)求a2,a3,a4
(2)是否存在一个实数λ,使得数列{
an2n
}成等差数列,若存在,求出λ的值,若不存在,请说明理由;
(3)求数列{an}的前n项和,证明:Sn≥n3+n2

查看答案和解析>>

(2012•上海)已知数列{an}、{bn}、{cn}满足(an+1-an)(bn+1-bn)=cn(n∈N*)
(1)设cn=3n+6,{an}是公差为3的等差数列.当b1=1时,求b2、b3的值;
(2)设cn=n3ann2 -8n.求正整数k,使得对一切n∈N*,均有bn≥bk
(3)设cn=2n +nan=
1+(-1)n2
.当b1=1时,求数列{bn}的通项公式.

查看答案和解析>>


同步练习册答案