过点M(3.2)作⊙O:x2+y2+4x-2y+4=0的切线方程是 ( ) A.y=2 B.5x-12y+9=0 C.12x-5y-26=0 D.y=2或5x-12y+9=0 查看更多

 

题目列表(包括答案和解析)

已知椭圆的左、右焦点分别为,离心率为P是椭圆上一点,且面积的最大值等于2

(1)求椭圆的方程;

(2)过点M(02)作直线与直线垂直,试判断直线与椭圆的位置关系5

(3)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。

 

查看答案和解析>>

设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.

(1)求抛物线C的方程;

(2)过点M(3,0)作方向向量为=(1,a)的直线与曲线C相交于A,B两点,求△PAB的面积S(a)并求其值域;

(3)设m>0,过点M(m,0)作直线与曲线C相交于A,B两点,问是否存在实数m使∠AFB为钝角?若存在,请求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

若椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2
5
,且过点(-3,2),⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的直线方程;
(3)求
OA
OB
的最大值.

查看答案和解析>>

若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(-3,2)离心率为
3
3
,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求
OA
OB
的最大值与最小值.

查看答案和解析>>

若椭圆过点(-3,2),离心率为,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.

  (1)求椭圆的方程;

(2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的直线方程;

查看答案和解析>>


同步练习册答案