1.重点:展示点到直线的距离公式的探求思维过程. 查看更多

 

题目列表(包括答案和解析)

(2009•荆州模拟)已知圆x2+y2-2x+4y+1=0和直线2x+y+c=0,若圆上恰有三个点到直线的距离为1,则c=
±
5
±
5

查看答案和解析>>

已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.

查看答案和解析>>

(1)选修4-2:矩阵与变换
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范围,使f(x)为常数函数;
(Ⅱ)若关于x的不等式f(x)-a≤0有解,求实数a的取值范围.

查看答案和解析>>

(1)证明:P(x0,y0)到直线Ax+By+C=0的距离公式为d=
|Ax0+By0+C|
A2+B2

(2)已知:在空间直角坐标系中,三元一次方程Ax+By+Cz+D=0(其中A,B,C,D为常数,且A,B,C不全为零)表示平面,
n
=(A,B,C)
为该平面的一个法向量.请类比点到直线的距离公式,写出空间的点P(x0,y0,z0)到平面Ax+By+Cz+D=0的距离公式,并为加以证明.

查看答案和解析>>

已知直线l:
x=1+t
y=-t
(t为参数)与圆C:
x=2cosθ
y=m+2sinθ
(θ为参数)相交于A,B两点,m为常数.
(1)当m=0时,求线段AB的长;
(2)当圆C上恰有三点到直线的距离为1时,求m的值.

查看答案和解析>>


同步练习册答案