解:设甲煤矿调往东站的煤为万吨.乙煤矿调往东站的煤为万吨.则 那么总运费:万元. 即.而满足.作出可行域. (略)设直线与轴交点为.则.把直线向上平移至M时最小.所以甲煤矿生产的煤全部运往西站,乙煤矿向东站运280万吨.向西站云20万吨时.总运费最少. 查看更多

 

题目列表(包括答案和解析)

甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为,求(1)恰有1人译出密码的概率;

(2)若达到译出密码的概率为,至少需要多少个乙这样的人?

【解析】第一问中,考虑两种情况,是甲乙中的那个人译出密码,然后利用互斥事件概率公式相加得到。

第二问中,利用间接法n个乙这样的人都译不出密码的概率为.可以得到结论。

解:设“甲译出密码”为事件A;“乙译出密码”为事件B,则

(1) ………………5分

(2)n个乙这样的人都译不出密码的概率为

.解得.

达到译出密码的概率为99/100,至少需要17人.

 

查看答案和解析>>

甲、乙两位同学都参加了本次调考,已知甲做5道填空题的正确率均为0.6,设甲做对填空题的题数为ξ,乙做对填空题的题数为η,且P(η=k)=a•25-k(k=1、2、3、4、5)(a为正常数),试分别求出ξ,η的分布列,并用数学期望来分析甲、乙两位同学解答填空题的水平.

查看答案和解析>>

设A、B两点的坐标分别为(-1,0),(1,0),条件甲:
AC
BC
>0
; 条件乙:点C的坐标是方程
x2
4
+
y2
3
=1(y≠0)
的解.则甲是乙的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不是充分条件也不是必要条件

查看答案和解析>>

设A,B两点的坐标分别为(-1,0),(1,0).条件甲:A、B、C三点构成以∠C为钝角的三角形;条件乙:点C的坐标是方程x2+2y2=1(y≠0)的解,则甲是乙的(  )

查看答案和解析>>

某厂制造A种电子装置45台,B种电子装置55台,为了给每台装置装配一个外壳,要从两种不同规格的薄钢板上截取.已知甲种薄钢板每张面积为2m2,可做A种外壳3个和B种外壳5个;乙种薄钢板每张面积为3m2,可做A种和B种外壳各6个,用这两种薄钢板各多少张,才能使总的用料面积最小?(请根据题意,在下面的横线处按要求填上恰当的关系式或数值)
解:设用甲、乙两种薄钢板各x张,y张,
则可做A种外壳
3x+6y
3x+6y
个,B种外壳
5x+6y
5x+6y
个,所用钢板的总面积为z=
2x+3y
2x+3y
(m2)依题得线性约束条件为:
3x+6y≥45
5x+6y≥55
x≥0
y≥0
,(x,y∈N)
3x+6y≥45
5x+6y≥55
x≥0
y≥0
,(x,y∈N)
作出线性约束条件对应的平面区域如图(用阴影表示)依图可知,目标函数取得最小值的点为
(5,5)
(5,5)
,且最小值zmin=
25
25
(m2

查看答案和解析>>


同步练习册答案