题目列表(包括答案和解析)
(09年湖北黄冈联考理)(14分)设M是由满足下列条件的函数
构成的集合:“①方程
有实数根;②函数
的导数
满足
”
(1)判断函数
是否是集合M中的元素,并说明理由;
(2)若集合M中的元素具有下面的性质:“若
的定义域为D,则对于任意
,都存在
,使得等式
成立”
试用这一性质证明:方程
只有一个实数根;
(3)设
是方程
的实数根,求证:对于
定义域中的任意的
,当
且
时,![]()
(09年崇文区二模理)(13分)
设M是由满足下列条件的函数
构成的集合:“①方程
有实数根;
②函数
的导数
满足
”
(I)判断函数
是否是集合M中的元素,并说明理由;
(II)集合M中的元素
具有下面的性质:若
的定义域为D,则对于任意[m,n]
,都存在
,使得等式
成立。试用这一性质证明:方程
只有一个实数根;
(08年实验中学诊断考试二理) 已知函数
的导数
处取到极大值,则a的取值范围是 ( )
A.(-
,-1) B.(-1,0) C.(0,1) D.(0,+
)
(07年广东卷理)(14分)已知函数
,
是方程f(x)=0的两个根
,
是f(x)的导数;设
,
(n=1,2,……)
(1)求
的值;
(2)证明:对任意的正整数n,都有
>a;
(3)记
(n=1,2,……),求数列{bn}的前n项和Sn。
(05年山东卷理)(12分)
已知数列
的首项
前
项和为
,且![]()
(I)证明数列
是等比数列;
(II)令
,求函数
在点
处的导数
并比较
与
的大小.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com