是椭圆的不平行于对称轴的一条弦.M是AB中点.O是坐标原点.求证: 查看更多

 

题目列表(包括答案和解析)

 (本小题满分12分,第一问4分,第二问8分)

如图(20),椭圆的中心为原点O,离心率,一条准线的方程为

(Ⅰ)求该椭圆的标准方程。

(Ⅱ)设动点P满足,其中M,N是椭圆上的点。直线OM与ON的斜率之积为。问:是否存在两个定点,使得为定值。若存在,求的坐标;若不存在,说明理由。

 

 

 

查看答案和解析>>

 (本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分.)如图,椭圆的中心为原点,离心率=,一条准线的方程是=.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设动点满足:=,其中,是椭圆上的点,直线的斜率之积为.问:是否存在定点,使得与点到直线=的距离之比为定值?若存在,求的坐标;若不存在,说明理由.

 

 

 

查看答案和解析>>

(湖南卷文)(本小题满分13分)

 已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点

为顶点的四边形是一个面积为8的正方形(记为Q).

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。

查看答案和解析>>

(2009湖南卷文)(本小题满分13分)

   已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点

为顶点的四边形是一个面积为8的正方形(记为Q).

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。

查看答案和解析>>

(本小题满分12分)已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.   (1)求椭圆的标准方程;   (2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.

查看答案和解析>>


同步练习册答案