2.若三棱锥的顶点在底面内的射影恰是底面三角形的垂心.则 ( ) A.三条侧棱的长都相等 B.三个侧面与底面所成的角都相等 C.三条侧棱必两两垂直 D.至少有两条侧棱分别与相对的底面三角形的一边互相垂直 查看更多

 

题目列表(包括答案和解析)

如图,三棱锥P-ABC的顶点P在圆柱曲线O1O上,底面△ABC内接于⊙O的直径,且∠ABC=60°,O1O=AB=4,⊙O1上一点D在平面ABC上的射影E恰为劣弧AC的中点.
(1)设三棱锥P-ABC的体积为
3
3
,求证:DO⊥平面PAC;
(2)若⊙O上恰有一点F满足DF⊥平面PAC,求二面角D-AC-P的余弦值.

查看答案和解析>>

如图,在四棱锥P-ABCD中,BC∥AD且BC:AD=1:2.
(1)求三棱锥A-PCD与四棱锥P-ABCD的体积之比;
(2)在PD上是否存在一点M,使得CM与平面PAB平行?证明你的结论.
(3)若∠BAD=90°且AB=AD,顶点P在底面ABCD内的射影恰还落在AB的中点0上,求证:PD⊥AC.

查看答案和解析>>

如图,在四棱锥P-ABCD中,BC∥AD且BC:AD=1:2.
(1)求三棱锥A-PCD与四棱锥P-ABCD的体积之比;
(2)在PD上是否存在一点M,使得CM与平面PAB平行?证明你的结论.
(3)若∠BAD=90°且AB=AD,顶点P在底面ABCD内的射影恰还落在AB的中点0上,求证:PD⊥AC.

查看答案和解析>>

如图,三棱锥P-ABC的顶点P在圆柱曲线O1O上,底面△ABC内接于⊙O的直径,且∠ABC=60°,O1O=AB=4,⊙O1上一点D在平面ABC上的射影E恰为劣弧AC的中点.
(1)设三棱锥P-ABC的体积为数学公式,求证:DO⊥平面PAC;
(2)若⊙O上恰有一点F满足DF⊥平面PAC,求二面角D-AC-P的余弦值.

查看答案和解析>>

如图,三棱锥P-ABC的顶点P在圆柱曲线O1O上,底面△ABC内接于⊙O的直径,且∠ABC=60°,O1O=AB=4,⊙O1上一点D在平面ABC上的射影E恰为劣弧AC的中点.
(1)设三棱锥P-ABC的体积为,求证:DO⊥平面PAC;
(2)若⊙O上恰有一点F满足DF⊥平面PAC,求二面角D-AC-P的余弦值.

查看答案和解析>>


同步练习册答案