2.一个圆的圆心在椭圆的右焦点上.且过椭圆的中心D(0.0).该圆与椭圆交于点P.设是椭圆的左焦点.直线恰好与圆相切于点P.则椭圆的离心率是( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是

(1)若是边长为的等边三角形,求圆的方程;

(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.

 

查看答案和解析>>

椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是

(1)若是边长为的等边三角形,求圆的方程;
(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.

查看答案和解析>>

椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是

(1)若是边长为的等边三角形,求圆的方程;
(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.

查看答案和解析>>

焦点在x轴上、长轴长为6的椭圆的右焦点为F2,以F2为圆心的圆与椭圆的一个交点为P,过椭圆左焦点F1且斜率为
1
2
的直线恰与圆切于点P,则椭圆的焦点为
5
,0)
5
,0)

查看答案和解析>>

椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为

(Ⅰ)求椭圆的方程;

(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。

 

查看答案和解析>>


同步练习册答案