对一切正数m.不等式n<+2m2恒成立.则常数n的取值范围是( ) A. B. C. D.[6.+∞) 查看更多

 

题目列表(包括答案和解析)

对一切正数m,不等式n<
4
m
+2m恒成立,则常数n的取值范围为(  )

查看答案和解析>>

已知数列{an}是由正数组成的等差数列,Sn是其前n项的和,并且a3=5,a4S2=28.
(1)求数列{an}的通项公式;
(2)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
对一切n∈N*均成立的最大实数a;
(3)对每一个k∈N*,在ak与ak+1之间插入2k-1个2,得到新数列{bn},设Tn是数列{bn}的前n项和,试问是否存在正整数m,使Tm=2008?若存在求出m的值;若不存在,请说明理由.

查看答案和解析>>

设单调递增函数f(x)的定义域为(0,+∞),且对任意的正实数x,y有f(xy)=f(x)+f(y),且f(
1
2
)=-1

(1)一个各项均为正数的数列{an}满足:f(sn)=f(an)+f(an+1)-1其中Sn为数列{an}的前n项和,求数列{an}的通项公式;
(2)在(1)的条件下,是否存在正数M使下列不等式:2n•a1a2…an≥M
2n+1
(2a1-1)(2a2-1)…(2an-1)
对一切n∈N*成立?若存在,求出M的取值范围;若不存在,请说明理由.

查看答案和解析>>

(2008•嘉定区一模)设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式Sn-1005>
a
2
n
2
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得
lim
n→∞
(u1+u2+…+un)
存在,并求出这个极限值.

查看答案和解析>>

设正数数列{an} 的前n项和为 Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an} 的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k≤1500中,是否存在正整数m,使得不等式Sn-1005>
an22
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案