1.椭圆的对称轴为坐标轴.若长.短轴之和为18.焦距为6.那么椭圆的方程为( ) (A) (B) (C)或 (D) 查看更多

 

题目列表(包括答案和解析)

若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为(  )
A、
x2
9
+
y2
16
=1
B、
x2
25
+
y2
16
=1
C、
x2
25
+
y2
16
=1
x2
16
+
y2
25
=1
D、以上都不对

查看答案和解析>>

若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为(  )
A、
x2
9
+
y2
16
=1
B、
x2
25
+
y2
16
=1
C、
x2
16
+
y2
25
=1
D、
x2
16
+
y2
9
=1

查看答案和解析>>

在以坐标轴为对称轴的椭圆上,A为右顶点,F为右焦点,过F作MN∥y轴,交椭圆于M、N两点,若|MN|=3,椭圆的离心率是方程2x2-5x+2=0的根.

(1)求椭圆方程;

(2)若(1)中所求椭圆的长轴不变,当以OA为斜边的直角三角形的直角顶点P落在椭圆上时,求椭圆短半轴长b的取值范围.

查看答案和解析>>

已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)过右焦点作斜率为的直线交曲线两点,且,又点关于原点的对称点为点,试问四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

查看答案和解析>>

已知椭圆()的短轴长为2,离心率为.过点M(2,0)的直线与椭圆相交于两点,为坐标原点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若点关于轴的对称点是,证明:直线恒过一定点.

查看答案和解析>>


同步练习册答案