已知,假设存在函数 则是 A.偶函数且有最大值 B.奇函数且有最大值 C. 奇函数且有最小值 D.偶函数且有最小值 查看更多

 

题目列表(包括答案和解析)

(2013•闸北区一模)假设你已经学习过指数函数的基本性质和反函数的概念,但还没有学习过对数的相关概念.由指数函数f(x)=ax(a>0且a≠1)在实数集R上是单调函数,可知指数函数f(x)=ax(a>0且a≠1)存在反函数y=f-1(x),x∈(0,+∞).请你依据上述假设和已知,在不涉及对数的定义和表达形式的前提下,证明下列命题:
(1)对于任意的正实数x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2)
(2)函数y=f-1(x)是单调函数.

查看答案和解析>>

已知定义域为[0,1]的函数f(x)同时满足以下三个条件:①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;③当x1,x2∈[0,1]且x1+x2∈[0,1]时,f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为“友谊函数”.给出下列命题:
(1)“友谊函数”f(x)一定满足f(0)=0;
(2)函数y=log2(x+1),y=2x-1,y=2x2-x在[0,1]上都是“友谊函数”;
(3)“友谊函数”f(x)一定不是单调函数;
(4)若f(x)为“友谊函数”,假设存在x0∈[0,1]使得f(x0)∈[0,1]且f[f(x0)]=x0,则f(x0)=x0
其中正确的命题的序号为
(1),(4)
(1),(4)
(把所有正确命题的序号都填上)

查看答案和解析>>

已知函数y=f(x),若存在x0,使得f(x0)=x0,则x0称是函数y=f(x)的一个不动点,设f(x)=
-2x+3
2x-7

(1)求函数y=f(x)的不动点;
(2)对(1)中的二个不动点a、b(假设a>b),求使
f(x)-a
f(x)-b
=k•
x-a
x-b
恒成立的常数k的值;
(3)对由a1=1,an=f(an-1)定义的数列{an},求其通项公式an

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>


同步练习册答案