题目列表(包括答案和解析)
设
是两个不共线的非零向量.
(1)若
=
,
=
,
=
,求证:A,B,D三点共线;
(2)试求实数k的值,使向量
和
共线. (本小题满分13分)
【解析】第一问利用
=(
)+(
)+
=
=
得到共线问题。
第二问,由向量
和
共线可知
存在实数
,使得
=
(
)
=
,结合平面向量基本定理得到参数的值。
解:(1)∵
=(
)+(
)+![]()
=
=
……………3分
∴
……………5分
又∵
∴A,B,D三点共线 ……………7分
(2)由向量
和
共线可知
存在实数
,使得
=
(
)
……………9分
∴
=
……………10分
又∵
不共线
∴
……………12分
解得![]()
在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:
(1)选择题得满分(50分)的概率;
(2)选择题所得分数
的数学期望。
【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为
,有1道题答对的概率为
,还有1道答对的概率为
,
所以得分为50分的概率为: ![]()
第二问中,依题意,该考生得分的范围为{35,40,45,50}
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为
得分为40分的概率为:
同理求得,得分为45分的概率为:
得分为50分的概率为:![]()
得到分布列和期望值。
解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为
,有1道题答对的概率为
,还有1道答对的概率为
,
所以得分为50分的概率为:
…………5分
(2)依题意,该考生得分的范围为{35,40,45,50} …………6分
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为
…………7分
得分为40分的概率为:
…………8分
同理求得,得分为45分的概率为:
…………9分
得分为50分的概率为:
…………10分
所以得分
的分布列为
|
|
35 |
40 |
45 |
50 |
|
|
|
|
|
|
数学期望![]()
| 5 |
|
|
|
|
| α |
| α |
| β |
|
|
(本小题满分10分)选修4-5不等选讲
设函数
(1)当
时,求不等式
的解集;(2)如果不等式
的解集为
,求
的值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com