题目列表(包括答案和解析)
(本题满分15分) 已知圆
,点
,直线
.⑴求与圆
相切,且与直线
垂直的直线方程;
⑵在直线
上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标.
(本题满分15分)
已知圆
,点
,直线
.
⑴求与圆
相切,且与直线
垂直的直线方程;
⑵在直线
上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标.
(本题满分15分)已知椭圆
:
的右顶点为
,过
的焦点且垂直长轴的弦长为
.
(I)求椭圆
的方程;
(II)设点
在抛物线
:
上,
在点
处的切线与
交于点
.当线段
的中点与
的中点的横坐标相等时,求
的最小值.
![]()
(本题满分15分)已知点
(0,1),
,直线
、
都是圆
的切线(
点不在
轴上).
(Ⅰ)求过点
且焦点在
轴上的抛物线的标准方程;
(Ⅱ)过点(1,0)作直线
与(Ⅰ)中的抛物线相交于![]()
两点,问是否存在定点
使
为常数?若存在,求出点
的坐标及常数;若不存在,请说明理由
(本题满分15分)如图,已知直线
与抛物线
和圆
都相切,
是
的焦点.
(1)求
与
的值;(2)设
是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
为邻边作平行四边形
,证明:点
在一条定直线上;
(3)在(2)的条件下,记点
所在的定直线为
,直线
与
轴交点为
,连接
交抛物线
于
两点,求
的面积
的取值范围.![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com