14.两条直线关于直线x-y=0对称.如果的斜率为.则的斜率为 查看更多

 

题目列表(包括答案和解析)

已知双曲线的两条渐近线经过坐标原点,且与以A(
2
,0)为圆心,1为半径的圆相切,双曲线的一个顶点A'与点A关于直线y=x对称.
(1)求双曲线的方程;
(2)是否存在过A点的一条直线交双曲线于M、N两点,且线段MN被直线x=-1平分.如果存在,求出直线的方程;如果不存在,说明理由.

查看答案和解析>>

已知双曲线S的两条渐近线过坐标原点,且与以点A(,0)为圆心,1为半径的圆相切,双曲线S的一个顶点与点A关于直线y=x对称.设直线l过点A,斜率为k.

(1)求双曲线S的方程;

(2)当k=1时,在双曲线S的上支上求点B,使其与直线l的距离为

(3)当0≤k<1时,若双曲线S的上支上有且只有一个点B到直线l的距离为,求斜率k的值及相应的点B的坐标.如图.

查看答案和解析>>

已知如图,直线(p>0),点F,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且
(1)求动点P的轨迹C的方程;
(2)当p=2时,曲线C上存在不同的两点关于直线y=kx+3对称,求实数k满足的条件(写出关系式即可);
(3)设动点M (a,0),过M且斜率为1的直线与轨迹C交于不同的两点A,B,线段AB的中垂线与x轴交于点N,当|AB|≤2p时,求△NAB面积的最大值.

查看答案和解析>>

如图,已知双曲线C1=1(m>0,n>0),圆C2:(x-2)2+y2=2,双曲线C1的两条渐近线与圆C2相切,且双曲线C1的一个顶点A与圆心C2关于直线y=x对称,设斜率为k的直线l过点C2
(1)求双曲线C1的方程;
(2)当k=1时,在双曲线C1的上支上求一点P,使其与直线l的距离为2.

查看答案和解析>>

如图,已知双曲线C1=1(m>0,n>0),圆C2:(x-2)2y2=2,双曲线C1的两条渐近线与圆C2相切,且双曲线C1的一个顶点A与圆心C2关于直线yx对称,设斜率为k的直线l过点C2

(1)求双曲线C1的方程;

(2)当k=1时,在双曲线C1的上支上求一点P,使其与直线l的距离为2.

查看答案和解析>>


同步练习册答案