题目列表(包括答案和解析)
如下图,已知点A(-2,1),B(1,3),O是坐标原点,求线段AB的中点M和三等分点P,Q的坐标.
如图,已知抛物线C:y2=2px和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)(y0≥1)作两条直线与⊙M相切于A、B两点,分别交抛物线为E、F两点,圆心点M到抛物线准线的距离为
.
(Ⅰ)求抛物线C的方程;
(Ⅱ)当∠AHB的角平分线垂直x轴时,求直线EF的斜率;
(Ⅲ)若直线AB在y轴上的截距为t,求t的最小值.
已知点A(-1,0),B(1,-1)和抛物线.
,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明:
为定值;
(2)若△POM的面积为
,求向量
与
的夹角;
(3)证明直线PQ恒过一个定点.![]()
如图,在平面直角坐标系xOy中,椭圆
=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0).已知(1,e)和(e,
)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的离心率;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.
(i)若AF1-BF2=
,求直线AF1的斜率;
(ii)求证:PF1+PF2是定值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com