根据圆的定义.求出了圆的标准方程.又由标准方程推出了圆的一般方程.圆的标准方程的优点.在于它明确地指出了圆心和半径.而圆的一般方程则突出了方程形式上的特点.它没有xy项.且x2.y2项的系数相等. 查看更多

 

题目列表(包括答案和解析)

函数f(x)=
1-x
ax
+lnx
是[1,+∞)上的增函数.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x2+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=-1叫做f(x)=x2+2x的下确界,若函数f(x)=
1-x
ax
+lnx
的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:ln
a+b
b
1
a+b
.

查看答案和解析>>

(本小题满分14分)  函数上的增函数.

(Ⅰ)求正实数的取值范围;

(Ⅱ)若函数对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=叫做的下确界,若函数的定义域为,根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界。

(Ⅲ)设,求证:

查看答案和解析>>

(本小题满分14分)  函数上的增函数.

(Ⅰ)求正实数的取值范围;

(Ⅱ)若函数对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=叫做的下确界,若函数的定义域为,根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界。

(Ⅲ)设,求证:

查看答案和解析>>

函数是[1,+∞)上的增函数.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x2+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=-1叫做f(x)=x2+2x的下确界,若函数的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:

查看答案和解析>>

某港口水的深度y(米)是时间t (0≤t≤24,单位:时)的函数,记作y=f(t),下面是某日水深的数据:
t/h 0 3 6 9 12 15 18 21 24
y/m 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经常期观察,y=f(t)的曲线可以近似得看成函数y=Asinωt+b的图象,
(1)试根据以上的数据,求出函数y=f(t)的近似表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5m或5m以上时认为是安全的,某船吃水深度(船底离水面的距离)为6.5m,试求一天内船舶安全进出港的时间.

查看答案和解析>>


同步练习册答案