已知点到两个定点.距离的比为.点到直线的距离为.求直线的方程. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知直线所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到F的最小距离为2

(1)求椭圆C的标准方程;

(2)已知圆O:,直线:,当点在椭圆C上运动时,直线与圆O是否相交于两个不同的点A,B?若相交,试求弦长|AB|的取值范围,否则说明理由.

查看答案和解析>>

(本小题满分12分)

已知直线所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到F的最小距离为2

(1)求椭圆C的标准方程;

(2)已知圆O:,直线:,当点在椭圆C上运动时,直线与圆O是否相交于两个不同的点A,B?若相交,试求弦长|AB|的取值范围,否则说明理由.

查看答案和解析>>

(本小题满分12分)某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

 

优秀

非优秀

合计

甲班

10

 

 

乙班

 

30

 

合计

 

 

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.

附: )

 

查看答案和解析>>

(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.

 

查看答案和解析>>

(本小题满分12分)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).

 

查看答案和解析>>


同步练习册答案