已知A.B是椭圆+=1上的两点.F2是椭圆的右焦点.若|AF2|+|BF2|=a.AB中点到椭圆左准线距离为.求椭圆方程. 查看更多

 

题目列表(包括答案和解析)

已知A、B是椭圆
x2
a2
+
25y2
9a2
=1
上的两点,F2是椭圆的右焦点,如果|AF2|+|BF2|=
8
5
a
,AB的中点到椭圆左准线距离为
3
2
,则椭圆的方程
 

查看答案和解析>>

已知A、B是椭圆
x2
a2
+
25y2
9a2
=1
上的两点,F2是椭圆的右焦点,如果|AF2|+|BF2|=
8
5
a
,AB的中点到椭圆左准线距离为
3
2
,则椭圆的方程 ______.

查看答案和解析>>

已知A、D分别为椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点与上顶点,椭圆的离心率e=
3
2
,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且
PF1
PF2
的最大值为1.
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.
(3)设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取最大值?并求最大值.

查看答案和解析>>

已知AD分别为椭圆E的左顶点与上顶点,椭圆的离心率FF2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1 .

(1)求椭圆E的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点AB,且OAOBO为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由;

(3)设直线l与圆相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

 

查看答案和解析>>

已知A、D分别为椭圆E:=1(a>b>0)的左顶点与上顶点,椭圆的离心率e=,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1.
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.
(3)设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取最大值?并求最大值.

查看答案和解析>>


同步练习册答案