已知圆C过定点A.圆心C在抛物线x2=2py上运动.若MN为圆C在x轴上截得的弦.设|AM|=m,|AN|=n.∠MAN=θ.(1)当点C运动时.|MN|是否变化?写出并证明你的结论?(2)求+的最大值.并求取得最大值时θ的值和此时圆C的方程. 查看更多

 

题目列表(包括答案和解析)

已知圆C过定点A(0,p)(p>0),圆心C在抛物线x2=2py上运动,若MN为圆C在x轴上截得的弦,设|AM|=m,|AN|=n,∠MAN=θ.

(1)当点C运动时,|MN|是否变化?写出并证明你的结论?

(2)求+的最大值,并求取得最大值时θ的值和此时圆C的方程.若不存在,说明理由

查看答案和解析>>

已知圆C过定点A(0,p)(p>0),圆心C在抛物线x2=2py上运动,若MN为圆C在x轴上截得的弦,设|AM|=m,|AN|=n,∠MAN=θ.
(1)当点C运动时,|MN|是否变化?写出并证明你的结论?
(2)求+的最大值,并求取得最大值时θ的值和此时圆C的方程.若不存在,说明理由

查看答案和解析>>

已知动圆过定点(
p
2
,0)
,且与直线l:x=-
p
2
相切,其中p>0.
(Ⅰ)求动圆圆心C的轨迹方程;
(Ⅱ)设A(x0,y0)为轨迹C上一定点,经过A作直线AB、AC 分别交抛物线于B、C 两点,若 AB 和AC 的斜率之积为常数c.求证:直线 BC 经过一定点,并求出该定点的坐标.

查看答案和解析>>

已知动圆过定点(
p
2
,0)
,且与直线x=-
p
2
相切,其中p>0.
(Ⅰ)求动圆圆心的轨迹C的方程;
(Ⅱ)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别为α和β,当α、β变化且α+β=
π
4
时,证明直线AB恒过定点,并求出该定点的坐标.

查看答案和解析>>

已知动圆过定点(,0),且与直线x=-相切,其中p>0:

(1)求动圆圆心的轨迹C的方程;

(2)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别为α和β,当α、β变化且α+β为定值θ(0<θ<π=时,证明直线AB恒过定点,并求出该定点的坐标.

查看答案和解析>>


同步练习册答案