题目列表(包括答案和解析)
(本小题满分12分)
如图,已知平行六面体ABCD—A1B1C1D1的底面为矩形,O1,O分别为上、下底面的中心,且A1在底面ABCD的射影是O,AB = 8,BC = AA1 = 6.
求证:平面O1DC⊥平面ABCD;
若点E、F分别在棱AA1、BC上,且AE = 2EA1,问点F在何处时EF⊥AD;
在 (2) 的条件下,求F到平面CC1O1距离.
(本小题满分12分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).
(I)将y表示为x的函数;
(II)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
(本小题满分12分) 如图,已知直四棱柱
的底面是直角梯形,
,
,
,
分别是棱
,
上的动点,且
,
,
.
(Ⅰ)证明:无论点
怎样运动,四边形
都为矩形;
(Ⅱ)当
时,求几何体
的体积。
(本小题满分12分) 如图,已知直四棱柱
的底面是直角梯形,
,
,
,
分别是棱
,
上的动点,且
,
,
.
(Ⅰ)证明:无论点
怎样运动,四边形
都为矩形;
(Ⅱ)当
时,求几何体
的体积。
(本小题满分12分)如图,已知
平面
,
是矩形,
,
,
是
中点,点
在
边上.
(I)求三棱锥
的体积;
(II)求证:
;
(III)若
平面
,试确定
点的位置.![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com