已知二次函数:的图象与轴有两个不同的公共点.若.且时., (1)比较与的大小, (2)证明:, (3)当时.求证: 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0
(1)证明:
1
a
是f(x)的一个根;(2)试比较
1
a
与c的大小.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c,
(1)若a>b>c且f(1)=0,证明:f(x)的图象与x轴有两个相异交点;
(2)若x1,x2,且x1<x2,f(x1)≠f(x2),证明:方程f(x)=
f(x 1)+f(x 2)2
必有一实根在区间 (x1,x2) 内;
(3)在(1)的条件下,设两交点为A、B,求线段AB长的取值范围.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c满足f(1)=0.
(I)若a>b>c,证明f(x)的图象与x轴有两个交点,且这两个交点间的距离d满足:
3
2
<d<3;
(Ⅱ)设f(x)在x=
t+1
2
(t>0,t≠1)处取得最小值,且对任意实数x,等式f(x)g(x)+anx+bn=xn+1(其中n∈N,g(x)=x2+x+1)都成立,若数列{cn}的前n项和为bn,求{cn}的通项公式.

查看答案和解析>>

已知二次函数f(x)满足:f(
1
2
-x
)=f(
1
2
+x
),其图象与x轴的两个交点间的距离为3,并且其图象过点(1,-2).
(1)求f(x)的表达式;
(2)如果方程f(x)=mx-3在区间(0,2)上有解,求实数m的取值范围.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c,直线l1:x=2,l2:y=-t2+8t(其中0≤t≤2.t为常数);若直线l1、l2与函数f(x)的图象以及l1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;
(Ⅲ)若g(x)=6lnx+m,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案