有一个容量为 20 的样本.其数据如下 44 45 29 42 58 37 53 52 49 34 27 32 42 55 40 38 50 26 54 26 ⑴填写以下的频率分布表, ⑵绘出频率分布图和折线图, ⑶据频率分布图的各组中值估计总体平均数.并将所得结果与实际的总体平均数相比较.计算误差. 分组 频数 频率 频率/组距 [19.5,29.5] [29.5,39.5] [39.5,49.5] [49.5,59.5] 合计 查看更多

 

题目列表(包括答案和解析)

有一个容量为20的样本,其数据如下(单位:岁)
44  45  29  42  58  37  53  52  49  34
27  32  42  55  40  38  50  26  54  26
(1)填写以下的频率分布表;
分组 频数 频率
[19.5,29.5]    
[29.5,39.5]    
[39.5,49.5]    
[49.5,59.5]    
合计    
(2)绘出频率分布直方图(用铅笔绘制)和折线图(在同一幅图中作);
(3)据频率分布直方图估计总体平均数,并将所得结果与实际的总体平均数相比较,计算误差.

查看答案和解析>>

有一个容量为20的样本,其数据如下(单位:岁)
44452942583753524934
27324255403850265426
(1)填写以下的频率分布表;
分组频数频率
[19.5,29.5]
[29.5,39.5]
[39.5,49.5]
[49.5,59.5]
合计
(2)绘出频率分布直方图(用铅笔绘制)和折线图(在同一幅图中作);
(3)据频率分布直方图估计总体平均数,并将所得结果与实际的总体平均数相比较,计算误差.

查看答案和解析>>

有以下四个命题:
①从1002个学生中选取一个容量为20的样本,用系统抽样的方法进行抽取时先随机剔除2人,再将余下的1000名学生分成20段进行抽取,则在整个抽样过程中,余下的1000名学生中每个学生被抽到的概率为
1
500

②线性回归直线方程
?
y
=
?
b
x+
?
a
必过点(
.
x
.
y
);
③某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,则该组数据的众数为17,中位数为15;
④某初中有270名学生,其中一年级108人,二、三年级各81人,用分层抽样的方法从中抽取10人参加某项调查时,将学生按一、二、三年级依次统一编号为1,2,…270.则分层抽样不可能抽得如下结果:30,57,84,111,138,165,192,219,246,270.以上命题正确的是(  )
A.①②③B.②③C.②③④D.①②③④

查看答案和解析>>

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
数学成绩
95
75
80
94
92
65
67
84
98
71
67
93
64
78
77
90
57
83
72
83
物理成绩
90
63
72
87
91
71
58
82
93
81
77
82
48
85
69
91
61
84
78
86
若单科成绩85分以上(含85分),则该科成绩为优秀。
(1)根据上表完成下面的2×2列联表(单位:人):
 
数学成绩优秀
数学成绩不优秀
合计
物理成绩优秀
 
 
 
物理成绩不优秀
 
 
 
合计
 
 
20
(2)根据题(1)中表格的数据计算,有多大的把握认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率。
参考数据:
①假设有两个分类变量X和Y它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联 表)为:
 
y1
y2
合计
x1
a
b
a+b
x2
c
d
c+d
合计
a+c
b+d
a+b+c+d
则随机变量,其中n=a+b+c+d为样本容量;
②独立在检验随机变量K2的临界值参考表:

查看答案和解析>>

某学校课题小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀 合计
物理成绩优秀
物理成绩不优秀
合计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>


同步练习册答案