椭圆上的点到直线x-y+6=0的距离的最小值是 . 查看更多

 

题目列表(包括答案和解析)

椭圆上的点到直线x-y+6=0的距离的最小值是           .

 

查看答案和解析>>

椭圆上的点到直线x-y+6=0的距离的最小值是          .

查看答案和解析>>

试求椭圆=1上的点到直线x-y+6=0的距离的最小值.

查看答案和解析>>

(08年重点中学联考一理) 以下四个关于圆锥曲线的命题中:

①平面内到定点A(1,0)和定直线l:x=2的距离之比为的点的轨迹方程是:

②点P是抛物线y2=2x上的动点,点Py轴上的射影是M,点A的坐标是A(3,6),则

  |PA|+|PM|的最小值是6;

③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;

④若过点C(1,1)的直线l交椭圆于不同的两点AB,且CAB的中点,则直线l的方程是3x+4y-7=0:

  其中真命题的序号是           (写出所有真命题的序号)

查看答案和解析>>

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.

(1)求椭圆的标准方程;           (2)求直线l的方程.

【解析】(1)中利用点F1到直线x=-的距离为可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。

解:(1)∵F1到直线x=-的距离为,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分

(2)设A(x1,y1)、B(x2,y2).由第(1)问知

,

……6分

∵A、B在椭圆+y2=1上,

……10分

∴l的斜率为.

∴l的方程为y=(x-),即x-y-=0.

 

查看答案和解析>>


同步练习册答案