题目列表(包括答案和解析)
椭圆
上的点到直线x-y+6=0的距离的最小值是
.
试求椭圆
=1上的点到直线x-y+6=0的距离的最小值.
(08年重点中学联考一理) 以下四个关于圆锥曲线的命题中:
①平面内到定点A(1,0)和定直线l:x=2的距离之比为
的点的轨迹方程是:![]()
②点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A的坐标是A(3,6),则
|PA|+|PM|的最小值是6;
③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;
④若过点C(1,1)的直线l交椭圆
于不同的两点A、B,且C是AB的中点,则直线l的方程是3x+4y-7=0:
其中真命题的序号是 (写出所有真命题的序号)
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com