(三)解答题 16.空间四边形ABCD中.E.F分别是AB和CB的中点.G.H分别是CD和AD上的点.且.求证:EF.FG.BD三条直线交于一点. 17.正方体ABCD-A1B1C1D1的棱长为a.M.N分别是AA1.D1C1的中点.过D.M.N三点的平面与正方体的下底面相交于直线l. 设l∩A1B1=P.求线段PB1的长. 18.画出满足条件的图形: α∩β=l.ABα.CDβ.AB∥l.CD∥l. 19.如图.△ABC在平面α外.AB∩α=P.BC∩α=Q.AC∩α=R.求证:P.Q.R三点共线. 20.已知直线a∥b∥c.l∩a=A.l∩a=A.l∩b=B.l∩c=C.求证:a.b.c.l四线共面. 该命题可作怎样的推广? 第2讲空间的平行直线和异面直线 查看更多

 

题目列表(包括答案和解析)

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.

   1.(本小题满分7分) 选修4一2:矩阵与变换

   如果曲线在矩阵的作用下变换得到曲线,   求的值。

 

   2.(本小题满分7分) 选修4一4:坐标系与参数方程

已知曲线的极坐标方程是,直线的参数方程是为参数).

   (1)将曲线的极坐标方程化为直角坐标方程;O

   (2)设直线轴的交点是是曲线上一动点,求的最大值.

 

3.(本小题满分7分)选修4-5:不等式选讲

    设函数

   (1)解不等式;     (2)若的取值范围。

查看答案和解析>>

解答题:要求写出文字说明、证明过程和演算步骤

在三棱锥S-ABC中,侧面SAC⊥底面ABC,△SAC是边长为4的正三角形,△ACB为直角三角形,∠ACB=,BC=4

  

(Ⅰ)求证:侧面SAC⊥侧面BSC;

(Ⅱ)求SB与底面ABC所成角;

(Ⅲ)求二面角S—AB—C的正切值.

查看答案和解析>>

已知三次函数f(x)=x(x-a)(x-b)  0<a<b

(1)当f(x)取得极值时x=s和x=t(s<t),求证:o<s<a<t<b;

(2)求f(x)的单调区间.

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

有四个正数a,b,c,d,前三数成等比数列,其和为;后三数成等差数列,其和为

(1)

(4分)求此四数

(2)

(4分)分别求以a,b,c为前三项的等比数列的前n项和Tn与以b,c,d为前三项的等差数列的前n项和Sn

(3)

(4分)比较Tn的大小.

 

查看答案和解析>>

解答题:应写出文字说明,演算步骤或证明过程

如下图,在直三棱柱ABC—中,AC=BC==2,∠ACB=,E、F、G分别为AC、、AB的中点,

  

(Ⅰ)求证∥平面EFG;

(Ⅱ)求FG与所成的角;

(Ⅲ)求证:FG⊥

(Ⅳ)求三棱锥—EFG的体积.

查看答案和解析>>


同步练习册答案