题目列表(包括答案和解析)
设椭圆M:
+
=1(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=
x+m交椭圆于A、B两点,P(1,
)是椭圆M上的一点,求S△ABC面积的最大值.
设椭圆M:
(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=
x+m交椭圆于A、B两点,椭圆上一点
,求△PAB面积的最大值.
已知椭圆C:
+
=1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
=λ
.
(Ⅰ)证明:λ=1-e2;
(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.
(Ⅰ)证明:λ=1-e2
(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形。
己知椭圆C:
+
=1(a>b>0)的左、右焦点为F1、F2,离心率为e.直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
.
(1)证明:λ=1-e2
(2)确定λ的值,使得△PF1F2是等腰三角形.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com