题目列表(包括答案和解析)
椭圆
=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的
A.7倍
B.5倍
C.4倍
D.3倍
已知P是椭圆
=1(a>b>0)上的点,P与两焦点F1、F2的连线互相垂直,且点P到两准线的距离分别为d1=6和d2=12,求椭圆方程.
椭圆x2/12+y2/3=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的
A.7倍 B.5倍 C.4倍 D.3倍
对于椭圆
=1(a>b>0),它的左、右焦点分别是F1(-c,0)和F2(c,0),P(x0,y0)是椭圆上的任一点,求证:|PF1|=a+ex0,|PF2|=a-ex0,其中e是椭圆的离心率.
(1)若椭圆C上的点A(1,
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值,试对双曲线
=1写出具有类似特性的性质,并加以证明.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com