解:设. ∵点在直线上. ∴与共线.而. ∴.即.有. ------------ ∵..-- ∴. 即. ------------------- 又. ∴. 所以..此时. -------------- . 于是. ------------- ∴. --------- 查看更多

 

题目列表(包括答案和解析)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)

 

22.选修4-1:几何证明选讲

       如图,已知是⊙的切线,为切点,是⊙的割线,与⊙交于两点,圆心的内部,点的中点。

  

(1)证明四点共圆;

   (2)求的大小。

 

23.选修4—4:坐标系与参数方程[来源:ZXXK]

       已知直线经过点,倾斜角

   (1)写出直线的参数方程;

   (2)设与曲线相交于两点,求点两点的距离之积。

24.选修4—5:不等式证明选讲

       若不等式与不等式同解,而的解集为空集,求实数的取值范围。

 

 

查看答案和解析>>

选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)
22.选修4-1:几何证明选讲
如图,已知是⊙的切线,为切点,是⊙的割线,与⊙交于两点,圆心的内部,点的中点。
  
(1)证明四点共圆;
(2)求的大小。
23.选修4—4:坐标系与参数方程
已知直线经过点,倾斜角
(1)写出直线的参数方程;
(2)设与曲线相交于两点,求点两点的距离之积。
24.选修4—5:不等式证明选讲
若不等式与不等式同解,而的解集为空集,求实数的取值范围。

查看答案和解析>>

选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)
22.选修4-1:几何证明选讲
如图,已知是⊙的切线,为切点,是⊙的割线,与⊙交于两点,圆心的内部,点的中点。
  
(1)证明四点共圆;
(2)求的大小。
23.选修4—4:坐标系与参数方程[来源:学科网ZXXK]
已知直线经过点,倾斜角
(1)写出直线的参数方程;
(2)设与曲线相交于两点,求点两点的距离之积。
24.选修4—5:不等式证明选讲
若不等式与不等式同解,而的解集为空集,求实数的取值范围。

查看答案和解析>>


同步练习册答案