题目列表(包括答案和解析)
| 2 |
| 2 |
(本小题满分13分)
已知数列{an}中,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n都有Sn=.
(1)证明:数列{an}为等差数列;(2)记bn=+,求数列{bn}的前n项和Tn;
(3)记cn=Tn-2n,是否存在正整数N,使得当n>N时,恒有cn∈(,3),若存在,请证明你的结论,并给出一个具体的N值;若不存在,请说明理由.
(本小题满分13分)
已知数列{an}中,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n
都有Sn=.
(1)证明:数列{an}为等差数列;(2)记
bn=+,求数列{bn}的前n项和Tn;
(3)记cn=Tn-2n,是否存在正整数N,使得当n>N时,恒有cn∈(,3),若存在,请证明你的结论,并给出一个具体的N值;若不存在,请说明理由.
、(12分)已知数列
的前n项和Sn=2n2+2n数列
的前 n 项和 Tn=2-bn
(1)求数列
与
的通项公式;
(2)设Cn=an2·bn,证明当且仅当n≥3时,Cn+1<Cn
已知数列{an},且x=
是函数f(x)=an-1x3-3[(t+1)an-an+1]
x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求数列{an}的通项公式;
(2)记bn=2(1-
),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;
(3)若cn=
,证明:
( n∈N﹡).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com