12.设F1.F2是双曲线的两个焦点.Q是双曲线上任意一点.从F1引∠F1QF2的平分线的垂线.垂足为P.则点P的轨迹方程是 . 查看更多

 

题目列表(包括答案和解析)

设F1、F2是双曲线-=1(a>0)的两个焦点

⑴若点P在双曲线上,且?=0,||?||=2,求双曲线的方程。

⑵设曲线C是以⑴中的双曲线的顶点为焦点,焦点为顶点的椭圆,若F1’、F2’分别是其左右 焦点,点Q是椭圆上任一点,M(2,)是平面上一点,求|QM|+|QF1’|的最大值。

 

 

查看答案和解析>>

设F1、F2分别为椭圆C:数学公式+数学公式=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,数学公式)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,数学公式),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线数学公式-数学公式=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线
x2
a2
-
y2
b2
=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

设F1、F2分别为椭圆C:+=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线-=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

设F1、F2分别为椭圆C:+=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线-=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>


同步练习册答案