如图.已知是边长为1的正三角形.M.N分别是边AB .AC上的点.线段MN经过的重心G.设. (1)试将的面积(分别记为与)表示为的函数, (2)求的最大值与最小值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)(文科做前两问;理科全做.)

某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.

(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;

(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;

(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.

 

 

查看答案和解析>>

(本小题满分12分)(文科做前两问;理科全做.)

某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.

(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;

(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;

(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.

 

 

查看答案和解析>>

(本小题满分12分)

 (理科)已知数列 {2 nan} 的前 n 项和 Sn = 9-6n.

 (I)    求数列 {an} 的通项公式;

(II)    设 bn = n·(2-log 2 ),求数列 { } 的前 n 项和Tn.

(文科)已知,且f(0)=8及f(x+1)-f(x)=-2x+1。

 (1)求的解析式;

 (2)求函数的单调递减区间及值域.

 

查看答案和解析>>

(本小题满分12分)(文科做前两问;理科全做.)
某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.

查看答案和解析>>

(本小题满分12分)

    某中学采取分层抽样的方法从应届高三学生中按照性别抽取20名学生,

其中8名女生中有3名报考理科,男生中有2名报考文科

   (1)是根据以上信息,写出列联表

   (2)用假设检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?参考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

 

2.07

2.71

3.84

5.02

6.64

7.88

10.83

 

 

查看答案和解析>>


同步练习册答案