已知点P是平行四边形ABCD所在平面外一点.M为PB的中点. 求证:PD//平面MAC. 5.在空间四边形ABCD中. (1)若E.F分别为AB.AD上的点且AE=AB.AF=AD.能推出EF//平面BCD吗?为什么? (2)若E.F分别是AB.AD上的任一点.线段AE.AB.AF.AD有怎样的比例关系时能使EF//平面BCD呢? 查看更多

 

题目列表(包括答案和解析)

如图,已知点P是平行四边形ABCD所在平面外的一点,E、F分别是PA、BD上的点且PE:EA=BF:FD,求证:EF∥平面PBC。

查看答案和解析>>

已知如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABC,垂足G在AD上,且AG=
1
3
GD,GB⊥GC.GB=GC=2,PG=4
,E是BC的中点.
(1)求证:PC⊥BG;
(2)求异面直线GE与PC所成角的余弦值;
(3)若F是PC上一点,且DF⊥GC,求
CF
CP
的值.

查看答案和解析>>

已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.

(1)试用向量方法证明E、F、G、H四点共面;

(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.

查看答案和解析>>

已知如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABC,垂足G在AD上,且AG=GD,GB⊥GC,GB=GC=2,PC=4,E是BC的中点.
(Ⅰ)求证:PC⊥BG;
(Ⅱ)求异面直线GE与PC所成角的余弦值;
(Ⅲ)若F是PC上一点,且DF⊥GC,求的值。

查看答案和解析>>

已知,如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在线段AD上,且PG=4,AG=
1
3
GD
,BG⊥GC,BG=GC=2,E是BC的中点.
(1)求异面直线GE与PC所成角的余弦值;
(2)求DG与平面PBG所成角的大小.

查看答案和解析>>


同步练习册答案