定义在是奇函数.并且在是减函数.求满足条件f(1-a)+f(1-a2)<0的a取值范围. ( ) A. C.[0.1] D.[-2.1] 查看更多

 

题目列表(包括答案和解析)

    定义在(11)上的函数f(x)满足:对任意xy(11)都有f(x)+f(y)=

    (1)求证:函数f(x)是奇函数;

    (2)如果当x(10)时,有f(x)0,求证:f(x)(11)上是单调递减函数;

    (3)(2)的条件下解不等式:+0

 

查看答案和解析>>

    定义在(11)上的函数f(x)满足:对任意xy(11)都有f(x)+f(y)=

    (1)求证:函数f(x)是奇函数;

    (2)如果当x(10)时,有f(x)0,求证:f(x)(11)上是单调递减函数;

    (3)(2)的条件下解不等式:+0

 

查看答案和解析>>

定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1)都有f(x)+f(y)=f()

(1)求证:函数f(x)是奇函数;

(2)若当x∈(-1,0)时,有f(x)>0,求证:f(x)在(-1,1)上是减函数;

(3)在(2)的条件下解不等式:f(x+)+f()>0

查看答案和解析>>

已知定义在(-1,1)上的函数f(x)满足f=1,且对xy∈(-1,1)时,有f(x)-f(y)=

(1)判断f(x)在(-1,1)上的奇偶性,并证明之;

(2)令x1xn+1=,求数列{f(xn)}的通项公式;

(3)设Tn为数列{}的前n项和,问是否存在正整数m,使得对任意的n∈N*,有Tn成立?若存在,求出m的最小值;若不存在,则说明理由.

查看答案和解析>>

已知定义在(-1,1)上的函数f(x)满足,且对x,y∈(-1,1)时,有(Ⅰ)判断f(x)在(-1,1)上的奇偶性,并加以证明;

(Ⅱ)令,求数列{f(x)}的通项公式;

(Ⅲ)设Tn为数列{}的前n项和,问是否存在正整数m,使得对任意的n∈N*,有成立?若存在,求出m的最小值,若不存在,则说明理由.

查看答案和解析>>


同步练习册答案