题目列表(包括答案和解析)
f(x)是定义在R上的函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(-1)=2.
(1)求证:f(x)为奇函数;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在[-2,4]上的最值.
设奇函数y=f(x)的定义域为R,f(1)=2,且对任意的x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)成立,当x>0时,f(x)是增函数,则函数y=-f2(x)在区间[-3,-2]上的最大值________
| π | 2 |
若f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值8,求F(x)在(-∞,0)上的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com