在等差数列{an}中.a1=-60,a17=-12. (1)求通项an; (2)求此数列前30项的绝对值的和. 解:(1)a17=a1+16d,即-12=-60+16d,∴d=3. ∴an=-60+3(n-1)=3n-63. (2)由an≤0,则3n-63≤0n≤21.∴|a1|+|a2|+-+|a30|=-(a1+a2+-+a21)+(a22+a23+-+a30)=+=×20+×9=765. 查看更多

 

题目列表(包括答案和解析)

(本题满分18分,第1小题4分,第2小题6分,第3小题8分)

已知数列{an}满足(其中λ≠0且λ≠–1,n∈N*),为数列{an}的前项和.

(1) 若,求的值;

(2) 求数列{an}的通项公式

(3) 当时,数列{an}中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分18分,第1小题4分,第2小题6分,第3小题8分)
已知数列{an}满足(其中λ≠0且λ≠–1,n∈N*),为数列{an}的前项和.
(1) 若,求的值;
(2) 求数列{an}的通项公式
(3) 当时,数列{an}中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.

查看答案和解析>>

(本题满分18分,第1小题4分,第2小题6分,第3小题8分)
已知数列{an}满足(其中λ≠0且λ≠–1,n∈N*),为数列{an}的前项和.
(1) 若,求的值;
(2) 求数列{an}的通项公式
(3) 当时,数列{an}中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案